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Structural equation model

Definition

A structural equation model (SEM) is a model that describes how values
are assigned to each variable in a system

Think about nature (or whoever) assigning values to each variable in the
system. This describes a generative story of how the data came to be as
follows.
Or think about each equation above represents a physical mechanism that
determines the value of the variable on the left (output) from values of the
variable on the right (inputs).
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We motivate structural equation models (SEMs) with an
example

Consider

L = fL(UL)

A = fA(L,UA)

Y = fY (A, L,UY ) = Y
a=A,l=L =

X

a,l

I (A = a, L = l)Y a,l . (1)

Here UL,UA,UY are external unmeasured factors that are mutually
independent. A generative story goes as follows:

The value of L is determined as a function of the value of UL as given
by the function fL.

The value of A is determined as a function of the value of L,UA as
given by the function fA.

The value of Y is determined as a function of the value of L,A,UY as
given by the function fY .
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We motivate structural equation models with an example

Consider the SEM M

L = fL(UL)

A = fA(L,UA)

Y = fY (A, L,UY ) (2)

and the graph G,

A YL

How does M induce a distribution over the observable law
P(L = l ,A = a,Y = y) and can this distribution be fully described in
some way by simply looking at the graph G?
And how about the distributions under interventions on A, that is,
P(L = l ,A = a,Y a = y)?
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We accompanied the structural equations with a picture

Structural equation models are typically accompanied with a corresponding
picture known as a path diagram (formally, this is a Directed Acyclic
Graph): that is, a graph which makes explicit the directionality of the
underlying process.
For a more compact representation, unmeasured factors that do not
determine two or more variables in the system can be left out of the
diagram (graph).
We will later see that these graphs can be interpreted as causal DAGs.
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Non-parametric structural equation model (NSPEM)

There exist unknown functions f1, . . . , fm such that the observed
(”factual”) variables V1, . . . ,Vm satisfy

V1 = f1(U1)

V2 = f2(PA2,U2)

V3 = f3(PA3,U3)

...

Vm = fm(PAm,Um) (3)

where:

f0, f1, . . . are unknown deterministic functions.

PAi is the set of random variables that are direct causes (”parents”)
of Vi .

U0,U1, . . . are random variables (”disturbances” or ”error terms”)
(not drawn in the graph). Sometimes called exogenous variables.
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NPSEM continues

For any treatment regime g = (gj1 , . . . , gjt ), the counterfactual variables
under g are generated by replacing the functions (fj1 , . . . , fjt ) with the
functions (gj1 , . . . , gjt ) , where t  m. Below is an illustration. This is
called performing recursive substitution.

V
g

1 = f1(U1)

V
g

2 = f2(PA
g

2 ,U2)

...

V
g+
j1

= gj1(PA
g

j1
,Uj1)

...

V
g

m = fm(PA
g

m,Um) (4)

The superscript ”g” indicates that V g

i
is a counterfactual variable (in other

words, potential outcome variable). The superscript ”g+” is given to the
variables on which we intervene. A NPSEM requires (3) and (4) to hold.
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Some remarks

Structural: fk not only generates observed (factual variables), but also
variables in other counterfactual worlds where we have done
interventions.

Counterfactual: The variable V
g

j
, j 2 {1, . . . ,m} are called

counterfactual variables under treatment regime g .

A cause: A variable A is a cause of a variable Y if a change in A can
lead to a change in Y .
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Example: Point intervention

Let the regime g be defined by the intervention that sets V2 to a.

V
a

1 = f1(U1)

V
a+
1 = a

V
a

3 = f3(PA
a

3,U3)

...

V
a

m = fm(PA
a

m,Um) (5)

The superscript ”a” indicates that V a

i
is a counterfactual variable (or

potential outcome variable).
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Now comes the causal inference part!

We must say something about the dependencies between the U’s to
encode causal relations.

Definition (Independent error model)

A NPSEM wrt. a DAG G such that U0, . . . ,UM are mutually independent.

This is Pearl’s NPSEM-IE
8
.

"IE" stands for independent errors.

NB: The independent error assumption is not really needed,

and can be relaxed in the more general FFRCISTG model
9

The Uks represents all other variables that are used by nature, the decision
maker or anyone else to determine the value of Vk .

8Judea Pearl. Causality: Models, Reasoning and Inference 2nd Edition. Cambridge
University Press, 2000.

9James M Robins. “A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor e↵ect”.
In: Mathematical modelling 7.9-12 (1986), pp. 1393–1512.
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Section 5

Causal graphs
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Graphs

Some things you need to know about graphs

Graphs encode conditional independendcies

Graphs allow us to represent and organize assumptions and prior
knowledge.

Graphs make the assumptions transparent and explicit.
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What is the role of causal graphs?

Graphs help us to reason about independencies; that is, they help us reason
about whether certain exchangeability assumptions (conditional
independencies) hold.

This agrees with the mantra: ”draw your assumptions before your
conclusions.”10

Graphs help us to conceptualize problems and have intuitive appeal, also for
researchers who are illiterate in math.

However, the intuitive graphical representations have a mathematical
justification. Therefore you – as mathematicians – can translate the
intuitive subject-matter expertise (from doctors, economists, social
scientists) to precise mathematical statements.

Graphs allow us to encode causation and association.

10Miguel A Hernan and James M Robins. Causal inference: What if? CRC Boca
Raton, FL:, 2018.
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Section 6

DAGs
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Basic definitions

In a DAG G we define the following sets (parents, children, ancestors and
descendants):

pa
G
(Vi ) ⌘ {Vt : Vt ! Vi exists in G}.

chG (Vi ) ⌘ {Vt : Vi ! Vt exists in G}.

anG (Vi ) ⌘ {Vt : Vt ! Va ! · · ·! Vj ! Vi exists in G} [ Vi .

deG (Vi ) ⌘ {Vt : Vi ! Va ! · · ·! Vj ! Vt exists in G}.

Further terminology:

A path where Va ! Vi  Vb is called a collider path, and here Vi is a
collider.

A path where Va  Vi ! Vb is called a fork.

A path is blocked if it contains a collider. Otherwise it is open.

A DAG is complete if there is an arrow between every pair of nodes.
A complete DAG imposes no restrictions on the observed data distributions.
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Topological order with respect to a graph

Definition (Topological order of a DAG)

The nodes V1,V2, . . . follow a topological order relative to a DAG G, if Vj

is not ancestor of Vi whenever j > i .

Note that topological orders are not necessarily unique, but in the DAG in
Figure 65 the only possible topological order is hL,A,Y i.
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Some preliminaries (for your reference)

Consider a study population ⌦.

Let ! be an element (i.e. unit or individual) in ⌦.

Note that we used subscript i to denote an individual in the first lecture, but
now the subscript just indicates a particular random variable, and we write
Vi (!) when we consider the value for individual !.

Consider a discrete random variable Vj .

Let Vj(!) be the value of Vj in !.

Let G be a DAG with nodes V = {V1,V2, · · · ,Vm}.
We use overlines to denote histories of variables, e.g.
v j ⌘ (v1, v2, . . . , vj) 2 V1 ⇥ V2 ⇥ · · ·⇥ Vm.

Let PAk = {Vj : Vj 2 pa
G
(Vk) }. A random vector

Let pak = {vj : Vj 2 pa
G
(Vk) } for a

v ⌘ (v1, v2, . . . , vm) 2 V1 ⇥ V2 ⇥ · · ·⇥ Vm A realisation of PAk .

From now on I will use p(vi | vj) to denote conditional densities
P(Vi = vi | Vj = vj).
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What is a graph?

Definition (Graph)

A graph G is a collection of

Nodes (vertices), V = {V1,V2, · · · ,Vm}.
Edges (ViVj) connecting some of the vertices.

We write (ViVj) to denote an edge that connects Vi and Vj .
A path is a sequence of edges of the form
h(V1,V2), (V2,V3), · · · , (Vk�1,Vk)i,
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What is a directed graph?

Definition (Directed Graph)

A directed graph is a graph with a set of nodes and arrows connecting
some of the nodes. A graph G is a collection of

Nodes (vertices) V = {V1,V2, · · · ,Vk}.
Directed edges connecting some of the nodes.

We write (ViVj)! to denote a directed edge from Vi to Vj .
It is directed, because the graphs A directed path is a sequence of edges
of the form
h(V1,V2)!, (V2,V3)!, · · · , (Vk�1,Vk)!i,
A directed graph has a cycle if there exists a path
h(V1,V2)!, (V2,V3)!, · · · , (Vk�1,Vk)!, (Vk ,V1)!i.
A Directed Acyclic Graph is a directed graph with no cycles.
PS: Now the subscript does not longer indicate an individual. V1 is now a random
variable. From now on, I will use V1(!) when I talk about the value for a particular
individual.

Mats J. Stensrud Biostatistics Spring 2024 64 / 416



Example

We can now define the graph below as a causal DAG that describes the
conditional randomised trial,

A YL

where V1 = L,V2 = A,V3 = Y .
Here paG (Y ) = (L,A).
The graph is complete because there is an arrow between every pair of
nodes.
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What is a model

Definition (Statistical model)

A statistical model P is a collection of laws, P = {P⌘ : ⌘ 2 �}.

Here � could be an infinite dimensional space. We will typically only
restrict ourselves to the space of models with finite variance.
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Bayesian network

Definition (Bayesian network)

A Bayesian Network with respect to a DAG G with nodes
V = (V1, . . . ,Vm) is a statistical model for the random vector V
specifying that V belongs to the collection of laws B satisfying the
Markovian factorisation

p(v) =
mY

j=1

p(vj | paj)

Here, p(x | y) ⌘ P(X = x | Y = y).
We say that the DAG G represents the Bayesian Network B.
For any law p in B, we say that p factors according to G,
or that p is represented by B.
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Causal DAG

Definition (Robins EPI 207)

A causal model associated with a DAG satisfies:

1 The lack of an arrow from node Vi to Vj can be interpreted as the absence
of a direct causal e↵ect of Vi on Vj (relative to the other variables on the
graph).

2 Any variable is a cause of all its descendants. Equivalently, any variable is
caused by all its ancestors.

3 All common causes, even if unmeasured, of any pair of variables on the
graph, are themselves on the graph.

4 The Causal Markov Assumption (CMA): The causal DAG is a statistical
DAG, i.e., the distribution of V factors.

5 Because of the causal meaning of parents and descendants on a causal DAG,
the Causal Markov Assumption is equivalent to the statement:

Conditional on its direct causes (i.e., parents), a variable Vi is
independent of any variable it does not cause (i.e., any nondescendant).
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